Skip to content

Observatori Astronòmic

feed-image

You are here: Home Divulgación Noticias del Cosmos
NOTICIAS DEL COSMOS
Para suscribirte a la lista de email de Noticias del Cosmos, manda un email solicitándolo a la siguiente dirección: noticias.cosmosuv.es


POLARBEAR detecta rizos en la luz más antigua del Universo PDF Imprimir E-mail

22/10/2014 dde University of California San Diego

Measurements of polarization of the cosmic microwave background Credit: POLARBEAR
Medidas de la polarización del fondo cósmico de microondas. Crédito: POLARBEAR
 

Un equipo de cosmólogos ha realizado las medidas más sensibles y precisas hasta la fecha de la polarización del fondo cósmico de microondas. El informe, publicado el 20 de octubre en el Astrophysical Journal, marca un éxito inicial para POLARBEAR, una colaboración de más de 70 científicos que utiliza un telescopio instalado en el desierto de Atacama en Chile para captar la luz más antigua del Universo.

POLARBEAR mide la radiación que queda después del Big Bang, que se ha enfriado y estirado con la expansión del Universo hasta las longitudes de onda de las microondas. Este fondo cósmico de microondas, el CMB, actúa como un enorme foco a contraluz, iluminando la estructura a gran escala del Universo y registrando en sí mismo marcas de la historia cósmica.

Kam Arnold y muchos otros científicos han desarrollado instrumentos sensibles llamados bolómetros que miden esta luz. Distribuidos por el telescopio, los bolómetros registran la dirección y el campo eléctrico de la luz procedente de múltiples puntos del cielo.

El equipo afirma haber encontrado rizos llamados modos B en los patrones de polarización, señal de que esta luz de fondo cósmica ha sido retorcida por las estructuras que se ha encontrado a la largo de su camino atravesando el Universo hasta nosotros, incluyendo la misteriosa materia oscura y los esquivos neutrinos.

El resultado de las primera campaña de observación ha estudiado los modos B en tres pequeñas zonas del cielo. El polvo de nuestra propia galaxia emite también radiación polarizada como la del CMB y ha obstaculizado otras medidas. Pero estas zonas están relativamente limpias, según Arnold. Y las variaciones en la polarización del CMB debidas al polvo se producen a una escala tan amplia que no influyen de modo apreciable en los modos B de más alta resolución presentados en este informe. "Estamos seguros de que estos modos B son de origen cosmológico y no galáctico", concluye Arnold.

[Noticia completa]

Actualizado ( Miércoles, 22 de Octubre de 2014 09:38 )
 
El satélite Fermi observa indicios de terremotos estelares en una tormenta de un magnetar PDF Imprimir E-mail

22/10/2014 de NASA

A rupture in the crust of a highly magnetized neutron star, shown here in an artist's rendering, can trigger high-energy eruptions. Fermi observations of these blasts include information on how the star's surface twists and vibrates, providing new insights into what lies beneath
Una fractura en la corteza de una estrella de neutrones altamente magnetizada, mostrada aquí en una ilustración artística, puede producir erupciones de alta energía. Las observaciones de Fermi de estas explosiones incluyen información sobre cómo vibra y se retuerce la superficie de la estrella, proporcionando datos nuevos sobre lo que hay debajo de la corteza. Crédito: NASA's Goddard Space Flight Center/S. Wiessinger

 

El telescopio espacial de rayos gamma Fermi de NASA detectó una rápida "tormenta" de explosiones de alta energía en una estrella de neutrones altamente magnetizada, también llamada magnetar, el 22 de enero de 2009. Ahora los astrónomos que analizan estos datos han descubierto indicios relacionados con ondas sísmicas atravesando el magnetar.

Tales señales fueron identificadas primero durante el debilitamiento de raras fulguraciones gigantes producidas por magnetares. Durante los últimos 40 años, se han observado fulguraciones gigantes sólo en tres ocasiones - en 1979, en 1998 y en 2004 - y sólo en los dos eventos más recientes se detectaron también señales relacionadas con terremotos estelares, que provocan que las estrellas de neutrones vibren como una campana.

"El instrumento Gamma-ray Burst Monitor (GBM)  de Fermi ha captado las mismas señales en erupciones mucho más pequeñas y mucho más frecuentes, abriendo la puerta potencialmente a una gran cantidad de datos nuevos que nos ayuden a comprender cómo se forman las estrellas de neutrones", comenta Anna Watts, astrofísica de la Universidad de Amsterdam, en los Países Bajos.

Las estrellas de neutrones son los objetos más densos, con campos magnéticos mayores y que giran más rápido del Universo que pueden ser observados directamente por los científicos. Debido a que la corteza sólida de una estrella de neutrones está ligada a su intenso campo magnético, una perturbación  en uno de los dos afecta inmediatamente al otro. Una fractura en la corteza producirá un reordenamiento del campo magnético, o una súbita reorganización del campo magnético puede a su vez fracturar la superficie. En cualquier caso, los cambios producen una emisión repentina de la energía almacenada a través de potentes explosiones que hacen vibrar la corteza, un movimiento que queda registrado en las señales de rayos gamma y rayos X de la explosión.

[Noticia completa]

Actualizado ( Miércoles, 22 de Octubre de 2014 09:40 )
 
Los grandes agujeros negros pueden ser un obstáculo para las estrellas nuevas PDF Imprimir E-mail

22/10/2014 de Johns Hopkins University

Elliptical galaxy NGC 1132, as seen by NASA’s Chandra X-Ray Observatory; the blue/purple in the image is the X-ray glow from hot, diffuse gas that is not forming into stars.

 

La galaxia elíptica NGC 1132, vista por el observatorio de rayos X Chandra de NASA. La imagen en azul/púrpura es el resplandor en rayos X del gas caliente y difuso que no forma estrellas. Crédito: NASA, ESA, M. West (ESO, Chile), y CXC/Penn State University/G. Garmire, et al.

Los agujeros negros masivos que escupen partículas que emiten en radiofrecuencias y viajan a casi la velocidad de la luz pueden obstaculizar la formación de estrellas nuevas en galaxias viejas, según un reciente estudio.

La postdoc Megan Gralla de la Universidad Johns Hopkins descubrió que la señal del efecto Sunyaev–Zel’dovich - típicamente empleada para el estudio de grandes cúmulos de galaxias - puede ser también empleada para aprender mucho sobre estructuras más pequeñas. El efecto SZ se produce cuando los electrones de alta energía de un gas caliente interaccionan con la débil luz del fondo cósmico de microondas, luz que todavía queda de las primeras épocas, cuando el Universo era mil veces más caliente y mil millones de veces más denso que hoy en día.

En el espacio, el gas caliente atrapado por una galaxia se puede enfriar y condensar, formando estrellas. Parte del gas también es canalizado hacia el agujero negro de la galaxia, que crece a la misma vez que lo hace la población de estrellas. Este ciclo puede repetirse continuamente: más gas es atrapado para enfriarse y condensar, más estrellas empiezan a brillar y el agujero negro central es cada vez más masivo. Pero en casi todas las galaxias maduras - las grandes galaxias llamadas elípticas por su forma - ese gas ya no se enfría. "Si el gas permanece caliente, no puede colapsar", afirma Tobias Marriage, participante en la investigación. Cuando esto ocurre, ya no se forman más estrellas nuevas.

Marriage, Gralla y el resto de sus colaboradores descubrieron que las galaxias elípticas con retroalimentación en radiofrecuencias - es decir, con emisiones en radio emitidas por partículas disparadas a casi la velocidad de la luz desde los agujeros negros situados en los centros de las galaxias - todas contienen gas caliente y una gran escasez de estrellas infantes. Esta es la prueba que apoya su hipótesis de que esta retroalimentación en radiofrecuencias es el "interruptor de apagado" del proceso de formación de estrellas en galaxias maduras.

Actualizado ( Miércoles, 22 de Octubre de 2014 09:40 )
 
La temperatura ambiente del Universo temprano podría haber mantenido vida PDF Imprimir E-mail

22/10/2014 de Inside Science

A new paper suggests that planets from the remnants of the universe's earliest stars could have supported life on dim, warm planets.
Un nuevo artículo sugiere que los planetas que se formaron a partir de los restos de las primeras estrellas del Universo pudieron haber albergado vida en planetas que se mantuvieron templados por la temperatura del fondo cósmico de microondas. Crédito: NASA/WMAP Science Team

 

La vida en el Universo podría ser mucho más antigua de lo que se pensaba, habiendo aparecido tan solo 15 millones de años después del Big Bang, según una nueva y provocativa idea propuesta por Avi Loeb, astrónomo de la Universidad de Harvard.

En este escenario del Universo primitivo, los planetas rocosos que nacieron de fragmentos de estrellas primordiales masivas se habrían calentado con el calor de la radiación que llenaba todo el espacio, y que entonces era mucho más caliente de lo que es hoy en día. Uno de estos mundos antiguos podría haber albergado agua líquida en su superficie, independientemente de su distancia a una estrella, y por tanto ser habitable para formas de organismos primitivas similares a las de la Tierra.

Loeb, quien ha publicado su investigación en la edición de este mes de la revista International Journal of Astrobiology, afirma que si se demuestra que está en lo cierto, entonces su idea socavaría la solidez del principio antrópico. Esta teoría, popular entre muchos científicos, señala que los valores de constantes y leyes físicas clave del Universo, como la fuerza electromagnética, la masa del neutrón, y quizás aún más importante, la densidad de energía del propio espacio vacío, conocido como la constante cosmológica, parecen estar ajustados para mantener la vida tal como la conocemos. De otro modo, no existiríamos.Pero si la vida puede desarrollarse bajo condiciones tan extremas y extrañas como las del Universo primitivo, entonces ello sugiere que los científicos deben de revisar la idea de que las condiciones de nuestro propio Universo maduro sean las únicas adecuadas para albergar vida.

Loeb comentó que la idea de que la vida pudo existir en épocas anteriores se le ocurrió en la ducha hace algunos años. "Ése es el lugar donde consigo silencio y tranquilidad", afirma. Lo que Loeb pensó ese día fue que la temperatura del fondo cósmico de microondas (CMB), la radiación que quedó después del Big Bang y que llena el universo entero, ha cambiado muchísimo con el paso del tiempo. Hoy en día está cerca del cero absoluto; 400 000 años después del Big Bang, durante la era conocida como recombinación, cuando se formaron los primeros átomos de hidrógeno, el CMB estaba casi tan caliente como la superficie del Sol. Pero durante una breve ventana temporal, entre 10 millones y 17 millones de años después del Big Bang, la temperatura del CMB fue de unos 27 ºC.

[Noticia completa]

Actualizado ( Miércoles, 22 de Octubre de 2014 09:41 )
 
<< Inicio < Prev 1 2 3 4 5 6 7 8 9 10 Próximo > Fin >>

Página 3 de 1015

Salida y puesta del sol

08:2213:4619:09
Valencia

La Luna hoy

http://tycho.usno.navy.mil/cgi-bin/phase.gif

Previsión meteorológica

Posición de la ISS

ISS

APOD

Astronomy Picture of the DAy

Estadisticas Noticias del Cosmos

web statisticsweb statistics